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Abstract
                             In the present study, fi ve cyclic nitrone superoxide spin adducts, i.e. DMPO-OOH, M 3 PO-OOH, EMPO-OOH, 
 DEPMPO-OOH and DEPDMPO-OOH, were chosen as model compounds to investigate the effect of 2,5-subsitituents on 
their stability, through structural analysis and decay thermodynamics using density functional theory (DFT) calculations. 
Analysis of the optimized geometries reveals that none of the previously proposed stabilizing factors, including intramo-
lecular H-bonds, intramolecular non-bonding interactions, bulky steric protection nor the C(2) – N(1) bond distance can be 
used to clearly explain the effect of 2,5-substituents on the stability of the spin adducts. Subsequent study found that spin 
densities on the nitroxyl nitrogen and oxygen are well correlated with the half-lives of the spin adducts and consequently are 
the proper parameters to characterize the effect of 2,5-substituents on their stability. Examination of the decomposition ther-
modynamics further supports the effect of the substituents on the persistence of cyclic nitrone superoxide spin adducts.    

  Keywords:   Spin trapping  ,   DFT calculations  ,   superoxide anion  ,   nitrone.   

  Abbreviations:  DMPO, 5,5-dimethyl-1-pyrroline  N -oxide; DEPMPO, 5-diethoxy phosphoryl-5-methyl-1-pyrroline  N -
oxide; EMPO, 5-ethoxycarbonyl-5-methyl-1-pyrroline  N -oxide; M 3 PO, 2,5,5-trimethyl-1-pyrroline-N-oxide; DEPDMPO, 
5-(diethoxy phosphoryl) -2,5-dimethyl-1-pyrroline – N-oxide.  
 Introduction 

 Electron spin resonance (ESR) in combined with the 
spin trapping technique, as one of the useful methods 
to detect superoxide radical and other reactive oxygen 
species, has been extensively employed to probe and 
characterize the free radical processes in chemical and 
biological systems. To effi ciently detect the free radicals 
in biological systems, the spin trap used should trap 
radicals rapidly, resulting in a long-lived radical spin 
adduct. The cyclic nitrone DMPO is one of the most 
commonly used spin traps [1,2]. However, its exten-
sive application in biological milieu has been restricted 
due to the low superoxide trapping rate (1.2 M �  1 s �  1  at 
ISSN 1071-5762 print/ISSN 1029-2470 online © 2010 Informa UK Ltd. (Info
DOI: 10.3109/10715761003758130
pH 7.4) [3,4] and the low stability of the corresponding 
superoxide spin adduct ( t  1/2   ≈  1.0 min) [5,6]. Therefore, 
the molecular structure of DMPO has been systemati-
cally modifi ed and various cyclic nitrone analogues 
obtained. For example, introducing the substituents 
P(O)(OCH 2 CH 3 ) 2  or COOCH 2 CH 3  affords alkoxy-
phosphoryl-nitrone DEPMPO [7,8] and alkoxycarbo-
nyl-nitrone EMPO [9,10], respectively. Both DEPMPO 
and EMPO exhibit a signifi cant improvement in the 
spin-trapping rate for superoxide radical and the stabil-
ity of their corresponding superoxide spin adducts 
[11,12] and both have been widely used in radical 
detection in chemistry and biology research [13,14]. 
rma Healthcare, Taylor & Francis AS)
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 The persistence of the superoxide spin adduct is an 
even more important factor in the above-mentioned 
criterion (i.e. the superoxide spin-trapping rate and 
the stability of the superoxide adduct). Therefore, 
many efforts have been made toward elucidating the 
stabilizing role of the strong electron-withdrawing 
alkoxyphosphoryl and alkoxycarbonyl groups regard-
ing the superoxide spin adducts. Tordo and Nohl 
[15,16] experimentally suggested that the strong elec-
tron-withdrawing effect and the large steric hindrance 
of the alkoxyphosphoryl group or alkoxycarbonyl 
group were responsible for the stability of the linear 
and cyclic nitrone spin adducts. Vellamena ’ s theoreti-
cal data [17 – 19] further revealed that the intramo-
lecular H-bond played an important role in the 
stability of the superoxide and hydroxyl spin adducts. 
In analysis of the phosphoryl effect on the stability of 
linear nitrone superoxide spin adducts, we found that 
besides the aforementioned stabilizing factors, the 
intra-molecular non-bonding interaction may be 
another contributing factor to the stabilization of the 
linear nitrone superoxide spin adducts [20]. Taken 
together, the large steric hindrance, intra-molecular 
H-bonding and non-bonding interactions induced by 
the strong electron-withdrawing groups are all pos-
sible structural factors that contribute to the stabiliza-
tion of superoxide spin adducts. 

  In vivo , the radical spin-trapping capability of nitrones 
is not only dependent on the static stabilizing effect on 
the resulting adducts, but is also associated with the 
spin adducts ’  surrounding environments. Previous 
studies [21 – 23] found that radical (  .  CH 3 ,  

 .  CO 2  
- ,   .  OH, 

etc.) adducts of M 3 PO, obtained by replacing the  β -H 
of DMPO with a methyl group, are far more stable and 
less susceptible to cellular-induced destruction than the 
corresponding DMPO adducts. However, the M 3 PO 
superoxide spin adduct is too unstable to be directly 
detected by ESR at room temperature [21 – 23]. To 
design a better spin trap for superoxide radicals on the 
basis of M 3 PO molecular skeleton, we previously syn-
thesized its phosphoryl analogue, DEPDMPO, through 
incorporation of one phosphoryl group at the C-5 posi-
tion [24]. ESR results indicated that the half-life of the 
superoxide spin adduct DEPDMPO-OOH is 2.6 min, 
which is much longer than that of M 3 PO-OOH. Com-
parative analysis of the half-lives of DMPO-OOH/
M 3 PO-OOH and DEPMPO-OOH/DEPDMP-OOH 
further indicates that the introduction of a methyl group 
at the C-2 position is not benefi cial to the stability of 
DMPO-type superoxide spin adducts. 

 Consequently, in order to have a better understand-
ing of the effects of having a 2-methyl group and 
strong electron withdrawing groups at the 5 position, 
briefl y referred to as 2,5-substituents, on the persis-
tence of the superoxide spin adducts and to reveal the 
correlation of such substitutions with the intrinsic 
structural features of the spin adducts, we herein 
comparatively analyse and discuss the geometric and 
electronic structures, as well as several possible decom-
position pathways of fi ve superoxide spin adducts 
DMPO-OOH, M 3 PO-OOH, EMPO-OOH, DEP-
MPO-OOH and DEPDMPO-OOH (Scheme1). Our 
goal in this paper was accomplished by virtue of the 
density functional theory (DFT) calculation method 
CPCM-B3LYP/6-311 � G(d,p)//B3LYP/6-31G(d).   

 Experimental  

 Materials 

 According to the reported literature methods, DMPO 
[1,2], M 3 PO [1], EMPO [10], DEPMPO [7] and 
DEPDMPO [24] were synthesized in our laboratory. 
Tetracyanoethylene (TCNE), Superoxide Dismutase 
(SOD), Catalase and Diethylenetriamine pentaacetic 
acid (DTPA) were purchased and used without further 
purifi cation. PSII membranes obtained from market 
spinach were isolated by the method of Berthold et al. 
[25] with the modifi cation of Yruela et al. [26].   

 Decay dynamics of superoxide spin adducts 

 The light-PSII system is utilized to investigate the 
kinetics of decay for the superoxide spin adducts 
[27 – 29]. Phosphate buffer solution (0.1 M, pH 7.0) 
containing PSII (0.45 mg Chl/ml), spin trap (50 mM), 
TCNE (1 mM) and DTPA (1 mM) is illuminated by 
He-Ne laser (25 mW, 633 nm) for 2 min. Once the 
light source was shut off, the decay of the superoxide 
spin adduct was followed by monitoring the decrease 
of the intensity of the fi rst low fi eld ESR line. Simula-
tion of an approximate fi rst-order decay process was 
carried out by Origin7.0 software. The peak intensity 
of the detected ESR signal is related to the actual 
concentration of the spin adduct by a scaling factor. 
The ESR spectra are recorded with the following 
parameters: frequency modulation, 100 kHz; modula-
Scheme 1. Molecular structures of superoxide spin adducts.
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tion amplitude, 2 Gauss; scan time, 42 s; time con-
stant, 0.16 s; microwave power, 12.8 mW.   

 Computational methods 

 Considering the accuracy and convenience of density 
functional theory (DFT) [30,31], the B3LYP function 
on the basis set of 6-31G (d) is employed to carry out 
calculations. First, molecular geometries are  optimized 
by semi-empirical quantum chemical method AM1. 
Then, B3LYP/6-31G (d) is used for the full geometry 
optimization in gas phase. All stable  structures pre-
dicted without virtual vibrational  frequencies are 
gained. Zero point vibrational energy (ZPVE) and the 
vibrational contribution to the enthalpy and entropy 
are scaled by a factor of 0.9806 [32]. Single point ener-
gies are obtained using B3LYP/6-311 � G (d,p). To 
resolve the basis set dependence problem encountered 
in the Mulliken population analysis, fi ve basis sets, i.e. 
6-31 � G(d,p), 6-311 � G(d,p), 6-311 �  � G(d,p), 
6-311 � G(2d,2p) and 6-311 �  � G(2d,2p), are used to 
calculate  Mulliken charges and spin densities. Therein, 
the solvent effects are also considered by employing the 
self-consistent reaction fi eld (SCRF) method with 
conductor-like polarizable continuum model (CPCM) 
[33]. All quantum chemical calculations are performed 
with Gaussian 98 [34].    

 Results and discussion  

 Decay kinetics of superoxide spin adducts 

 The stability of the superoxide spin adduct is one of 
the most crucial factors for designing a desirable 
superoxide spin trap and, thus, the half-life ( t  1/2 ) is 
commonly used to evaluate its performance. How-
ever, the previously reported  t  1/2 s regarding the fi ve 
superoxide spin adducts studied in this work were not 
obtained in an identical experimental condition [5 – 7,
10,11,35]. In order to comparatively investigate the 
substituent effects on their stability, as listed in the 
fi rst row of Table I, the  t  1/2 s are re-examined under 
uniform conditions. As expected, M 3 PO-OOH was 
too unstable to be detected by ESR spectroscopy. In 
the case of DEPDMPO-OOH, only the  trans -isomer 
was observed due to the steric hindrance of the 
alkoxyphosphoryl and methyl groups, which forces 
the superoxide radical to attack the C � N bond only 
from the opposite side of the alkoxyphosphoryl group. 
As shown in Figure 1A, the ESR spectrum of DEP-
DMPO-OOH (a N   �  1.34 mT, a P   �  5.05 mT) was 
obtained by the light-PSII system. However, no ESR 
signal was detectable upon the addition of SOD (Fig-
ure 1B), which confi rms that the ESR signal shown 
in Figure 1A is due to the trapping of superoxide. On 
the other hand, trapping hydroxyl radical using Fen-
ton system led to the detection of a persistent signal 
shown in Figure 1C (a N   �  1.46 mT, a P   �  4.68 mT). 
The signal could be inhibited by the presence of cat-
alase (50 U/mL) in the Fenton system (Figure 1D). 
The introduction of a methyl group at the C-2 posi-
tion not only eliminates the presence of the  cis -isomer, 
but also removes the  β -H splittings from the ESR 
spectra for both spin adducts. Both factors lead to a 
simplifi ed ESR spectrum with higher resolution. 
Remarkable differences in  t  1/2  values among DEP-
MPO-OOH (14.8 min), EMPO-OOH (8.6 min) and 
DMPO-OOH (56 s) indicates that the incorporation 
of an electron-withdrawing group at the C-5 position 
Table I. Half-lives (t1/2) and ESR hyperfi ne splitting constants (AN) for the superoxide spin adducts in phosphate buffer (0.1 M, 
pH � 7.0).

Spin adduct DMPO-OOH M3PO-OOH EMPO-OOH DEPMPO-OOH DEPDMPO-OOH

t1/2 (min) 56s; this work —   8.0; this work   14.0; this work 2.1; this work
1.0; ref. 1b
54s; ref. 2c
50s; ref. 18

— 8.0; ref. 4a
4.8; ref. 4b
8.6; ref. 4c

14.0; ref. 3a
14.2; ref. 2c
14.8; ref. 3b
13.0; ref. 18

2.6; ref. 11

AN(G) 14.3 — 13.3 13.2 13.4
Figure 1. The ESR spectra of DEPDMPO’s spin adducts. (A) 
Obtained in the mixture of phosphate buffer solution (0.1 M, pH 
7.0) containing PSII (0.45 mg Chl/ml), DEPDMPO (50 mM), 
TCNE (1 mM) and DTPA (1 mM) under He-Ne laser illumination 
(25 mW, 633 nm, 2 min); (B) As in (A) but in the presence of SOD 
(1000 U/mL); (C) Obtained in the mixture of phosphate buffer 
solution (0.1 M, pH 7.4) containing H2O2 (1 mM), FeSO4 (0.3 
mM) and DEPDMPO (50 mM); (D) As in (C) but in the presence 
of Catalase (50 U/mL)
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of cyclic nitrones increases the stability of the corre-
sponding superoxide spin adduct. Considering that 
DEPMPO-OOH has a much longer half-life than 
EMPO-OOH, it seems that the stabilizing effect of 
the alkoxyphosphoryl group is stronger than that of 
the alkoxycarbonyl group. Comparative investigation 
revealed that the introduction of an electron-donating 
methyl group at the C-2 position of nitrones decreases 
the stability of the spin adducts. For example, both 
DEPDMPO-OOH (2.1 min) and M 3 PO-OOH 
(undetectable) have smaller  t  1/2 s in comparison with 
DEPMPO-OOH and DMPO-OOH, respectively.   

 Structural stability of superoxide spin adducts   

 Analysis of the optimized geometry of superoxide spin ad-
ducts.   Intra-molecular H-bonding, non-bonding in-
teractions, as well as large steric hindrance induced 
by strong electron-withdrawing groups, as mentioned 
in the Introduction, are all possible structural factors 
which can stabilize linear nitrone superoxide spin ad-
ducts. Thus, in order to theoretically elucidate the 
effect of 2, 5-substituents on the stability of the su-
peroxide spin adducts, in the following sections we at-
tempt to analyse these three stabilizing factors based 
on their optimized geometries. Two optimized con-
fi gurations, i.e.  cis - and  trans -isomers, are assigned for 
DEPMPO-OOH and EMPO-OOH, indicating the 
position of the alkoxyphosphoryl or alkoxycarbonyl 
groups relative to the OOH group. 

 The calculated intra-molecular H-bonds (IHB) 
between hydrogen of the OOH group and oxygen of 
the nitroxyl, alkoxyphosphoryl and alkoxycarbonyl 
groups are in the range of 1.814 ∼ 2.100  Å  (Table II). 
Herein, IHBs for DMPO-OOH, EMPO-OOH and 
DEPMPO-OOH are similar to previously reported 
values [18,36]. The IHB for  cis -DEPMPO-OOH 
(1.814  Å ) is shortest, indicating that the alkoxyphos-
phoryl group is the best among the studied groups to 
stabilize the superoxide spin adducts through IHB. 
Further analysis shows that EMPO-OOH, however, 
has weaker IHBs (1.987  Å  for  trans -isomer and 2.100 
 Å  for  cis -isomer) than DMPO-OOH (1.959  Å ), para-
doxically inconsistent with their stability. This implies 
that intra-molecular H-bonding is unable to explain 
the effect of the substituent at C-5 on the stability of 
the superoxide spin adducts. A similar result is also 
observed for the methyl at C-2. For instance, less 
stable M 3 PO-OOH (1.933  Å ) affords a stronger IHB 
than DMPO-OOH (1.959  Å ) does. Therefore, 
although IHBs may play an important role in stabiliz-
ing the superoxide spin adducts, it cannot be used to 
fully interpret the substituent effect at 2, 5-positions. 

 Examination of intra-molecular non-bonding interac-
tions indicates that many interactions are present in the 
molecular structure of the superoxide spin adducts and 
their distances vary from 2.293 – 2.973  Å  (Table III), 
which falls within the range of previously proposed non-
bonding interactions (2.591 ∼ 2.963  Å ) [37]. The alkoxy-
phosphorylated and alkoxycarbonylated spin adducts, 
such as DEPMPO-OOH and EMPO-OOH, afford 
stronger intra-molecular non-bonding interactions com-
pared to DMPO-OOH, implying that the electron-with-
drawing groups at the C-5 position increase the stability 
of the superoxide spin adducts through intra-molecular 
non-bonding interactions. However, the introduction of 
a methyl group at the C-2 position enhances the intra-
molecular non-bonding interaction in DEPDMPO-
OOH or M 3 PO-OOH when compared to DEPMPO-
OOH or DMPO-OOH, respectively. As a result, the 
intra-molecular non-bonding interaction is obviously in 
contradiction with the destabilizing role of the methyl 
group for the spin adducts. 

 Inspection into the optimized geometry of DEP-
MPO-OOH shows that the alkoxyphosphoryl group 
is held in close proximity to the hydroperoxyl and 
nitroxyl groups. The steric proximity can be evidently 
demonstrated by comparison of some spatial angles 
around C (5). For example, the angle of N (1)-C 
(5)-P (106.6 °  for  trans -isomer and 106.7 °  for  cis -iso-
Table II. Intramolecular H-bonds (including O-H—O-N, O-H—O�P 
and O-H—O�C) calculated by B3LYP/6-31G(d).

Spin adduct

H-bond distance (Å)

This work Ref. 8b

DMPO-OOH 1.959 1.99
M3PO-OOH 1.933
EMPO-OOH 1.987-trans;a 

2.100-cisb
1.99-trans;a 2.00-cisb

DEPMPO-OOH 2.076-trans;a 
1.814-cisc

2.00-trans;a 1.91-cisc

DEPDMPO-OOH 1.963

aO-H—O-N. bO-H—O�C. cO-H—O�P.
Table III. Selected nonbonding distances (Å) in the optimized 
geometries of superoixde spin adducts at the B3LYP/6-31G(d) 
level of theory.

Spin adduct Distances (Å)

M3PO-OOH 2.300, 2.524, 2.663, 2.696, 2.720, 
2.795, 2.827, 2.988

DMPO-OOH 2.375, 2.404, 2.704, 2.727, 2.803
Trans-EMPO-OOH 2.409, 2.488, 2.508, 2.534, 2.600, 2.627, 

2.642, 2.657, 2.733, 2.777, 2.973
Cis-EMPO-OOH 2.319, 2.541, 2.570, 2.613, 2.626, 2.632, 

2.657, 2.658, 2.667, 2.713, 2.954
Trans-DEPMPO-OOH 2.411, 2.480, 2.539, 2.547, 2.579, 

2.641, 2.645, 2.671, 2.689, 2.694, 
2.697, 2.729, 2.737, 2.751, 2.769, 
2.904, 2.939

Cis- DEPMPO-OOH 2.545, 2.581, 2.612, 2.612, 2.623, 
2.643, 2.643, 2.696, 2.698, 2.708, 
2.720, 2.724, 2.758, 2.784, 2.800, 
2.874, 2.910, 2.960

DEPDMPO-OOH 2.427, 2.500, 2.532, 2.546, 2.594, 
2.638, 2.654, 2.672, 2.694, 2.696, 
2.701, 2.706, 2.724, 2.729, 2.763, 
2.766, 2.768, 2.885, 2.899, 2.936
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mer) is smaller than the usual bond angle of sp 3  
hybrid orbital (109.5 ° ). It can be thus determined that 
the large alkoxyphosphoryl group provides steric pro-
tection towards two vulnerable groups, -OOH and 
nitroxyl, by preventing or inhibiting the attack from 
other molecules (e.g. water) in the solution and, there-
fore, stabilizes the spin adduct. Similarly, this steric 
protection also occurs in the structures of the other 
four superoxide spin adducts. As shown in Table IV, 
the order for the corresponding spatial angle N(1)-
C(5)-P (or C) is DEPDMPO-OOH (106.3 ° )  �  DEP-
MPO-OOH (106.6 °  for  trans -isomer and 106.7 °  for 
 cis -isomer)  �  EMPO-OOH (106.4 °  for  trans -isomer 
and 107.3 °  for  cis -isomer)  �  DMPO-OOH (108.9 ° )  ∼  
M 3 PO-OOH (108.9 ° ). It is therefore concluded that 
an alkoxyphosphoryl group substituted at the C-5 
position has stronger protection than either alkoxycar-
bonyl or methyl groups, because of the larger steric 
volume, explaining the better stability of DEPMPO-
OOH, compared to that of EMPO-OOH and DMPO-
OOH, and also the better stability of DEPDMPO-OOH 
when compared to that of M 3 PO-OOH. However, in 
comparison to the C-5 substitution, the methyl group 
substituted at the C-2 position has almost no effect on 
varying the spatial angles (N(1)-C(5)-P of DEPD-
MPO-OOH and N(1)-C(5)-C of M 3 PO-OOH), which 
probably means that the C-2 substitution does not 
affect the stability via the means of steric protection. 

 The above analyses demonstrate that intra-molecular 
H-bonds, intra-molecular non-bonding interactions, as 
well as steric protection may be important factors that 
contribute to stabilizing the superoxide spin adducts, 
but they cannot be used to fully elucidate the effects of 
2,5-subsituents on the stability of the spin adducts. This 
encourages us to seek other better explanations. 

 The C (2) – N (1) bond has been reported to play 
a key role in the unimolecular decomposition pro-
cess of nitrone radical adducts [17,38,39]. Thus, the 
C (2) – N (1) bond distance was chosen as another 
candidate to represent the 2, 5-substituents ’ effect. As 
listed in Table IV, the order of C(2) – N(1) bond dis-
tances is as follows: DEPDMPO-OOH (1.493 Å )  �  
M 3 PO-OOH (1.492  Å )  �  DMPO-OOH (1.481  Å ) 
 �  EMPO-OOH (1.480  Å - cis )  �  DEPMPO-OOH 
(1.474  Å - cis ). Except for DEPDMPO-OOH, the 
order is the same as that for their stability profi le. That 
is to say, introduction of an electron-withdrawing 
group at C-5 position shortens the C(2) – N(1) bond 
distance and then stabilizes superoxide spin adducts, 
but the addition of a methyl group at the C-2 position 
has an opposite effect.    

 Analysis of the optimized electronic structure of superoxide 
spin adducts .  Chemical reactivity is not only closely 
related to the geometric structures of the reactants, 
but is also dominated by their electronic structures. 
It may therefore be expected that the changes in the 
electronic structures of superoxide spin adducts will 
vary the stabilities according to the effect from 2, 
5-substituents. 

 It has been recently reported that a relatively nega-
tive charge on the nitroxyl nitrogen of the hydroxyl 
spin adducts, caused by a strong electron-withdraw-
ing group at C-5 position, can stabilize the C – N bond 
and signifi cantly increases the electronegativity of 
nitrogen through an inductive effect [17,40]. Our cal-
culation (Table IV) reveals that either the Mulliken 
charge on the nitroxyl nitrogen for EMPO-OOH 
(0.0491- cis ) or that for DEPMPO-OOH (0.0863- cis ) 
is obviously lower than that for DMPO-OOH 
(0.1305), consistent with Villamena et al. ’ s [17,40] 
works. However, compared with DEPMPO-OOH, 
EMPO-OOH possesses an even lower charge on the 
nitroxyl nitrogen, which cannot be readily interpreted 
according to the stability difference. The methyl 
substituent at the C-2 position affords more positive 
charge on the nitroxyl nitrogen, as demonstrated by 
the following order: DEPDMPO-OOH (0.3027)  �  
M 3 PO-OOH (0.2476)  �  DMPO-OOH (0.1305)  �  
DEPMPO-OOH (0.0863- cis ). However, the order is 
Table IV. Thermodynamic parameters for superoxide spin adducts calculated by CPCM-B3LYP/6-311�G(d,p)//B3LYP/6-31G(d).

DMPO-OOH M3PO-OOH EMPO-OOH DEPMMPO-OOH DEPDMPO-OOH

Milliken Spin Density on N (1) 0.4992 0.5090 0.4836-trans 
0.4857-cis

0.4661-trans 
0.4499-cis

0.4886

Milliken Spin Density on O (1’) 0.4697 0.4658 0.4784-trans 
0.4957-cis

0.4829-trans 
0.5114-cis

0.4719

Milliken Chargeon N (1) 0.1305 0.2476 0.1638-trans 
0.0491-cis

0.2268-trans 
0.0863-cis

0.3027

Milliken Chargeon O (1’) �0.2638 �0.2305 �0.2044-trans 
�0.1477-cis

�0.1443-trans 
�0.0834-cis

�0.1068

Bond Angles (°) ofN (1)-C 
(5)- P (C)

108.9 108.9 106.4-trans
107.3-cis

106.6-trans 
106.7-cis

106.3

Bond Lengths (Å) of N 
(1)-C (2)

1.481 1.492 1.481-trans 
1.480-cis

1.482-trans 
1.474-cis

1.493

Bond Lengths (Å) of O 
(2’)-O (3’)

1.455 1.455 1.454-trans 
1.450-cis

1.454-trans 
1.452-cis

1.454

Dihedral Angles (°) of O 
(1’)-N (1)-C (2)-H

73.6 �62.4-trans 
62.1-cis

�63.3-trans 
43.6-cis
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not identical to the stability sequence of all four 
adducts. As a result, the effect of the 2, 5-substituents 
on the stability of the superoxide spin adducts cannot 
be simply explained by the charge on the nitroxyl 
nitrogen. Similarly, we found that the charge on 
nitroxyl oxygen (Table IV) has no correlation with the 
stability of the superoxide spin adducts, either. 

 It is well known that the delocalization of the 
unpaired electron between the nitrogen and oxygen 
atoms of nitroxyl radical (N – O  .  ) presents a resonance 
structure with N•+-O-•. Electron-withdrawing sub-
stituents at adjacent carbons increase spin density at 
the oxygen atom due to the increased role of the res-
onance structure with N – O  .   and as a result the oxygen 
has the lower charge [41]. There exists a lower spin 
density and higher charge at the nitrogen atom when 
a strong electron-withdrawing group binds at C-5 
position. Considering the stabilizing effect of an elec-
tron-withdrawing substituent, such as an alkoxyphos-
phoryl or alkoxycarbonyl group, it is proposed that a 
relatively low spin density on the nitrogen atom prob-
ably stabilizes the superoxide spin adduct. The order 
of spin densities on the nitroxyl nitrogen (summa-
rized in Table IV) can be obtained as follows: M 3 PO-
OOH (0.5090)  �  DMPO-OOH (0.4992)  �  
DEPDMPO-OOH (0.4886)  �  EMPO-OOH (0.4836 
for  trans -isomer; 0.4857 for  cis -isomer)  �  DEPMPO-
OOH (0.4461 for  trans -isomer; 0.4499 for  cis -isomer). 
It is worth noting that the order is nearly identical to 
the stability sequence of all fi ve spin adducts, which 
is evidence supporting the proposal about the stabiliz-
ing effect of spin density on the nitroxyl nitrogen. A 
quantitative linear correlation between spin densities on 
the nitrogen and the half-lives for the superoxide spin 
adducts is shown in Figure 2A ( r   �   - 0.8066). Therefore, 
it is concluded that the more stable the superoxide spin 
adduct, the lower the spin density on the nitroxyl nitro-
gen. Comparatively, the spin density on nitroxyl oxygen 
has a similarly positive correlation with the stability of 
the spin adducts (Figure 2B,  r   �  0.9851). It is known 
that Mulliken charges are basis set dependent and 
therefore four other basis sets was used to assess Mul-
liken charges and spin densities of nitroxyl nitrogen and 
oxygen (see Table V). As illustrated in Figure 2 and 
Table V, there are all those linear correlations between 
the half-lives for the superoxide spin adducts and the 
Mulliken spin densities either on nitrogen or oxygen 
nucleus derived with all fi ve basis sets. Consequently, 
both spin densities on nitroxyl nitrogen and nitroxyl 
oxygen are good parameters that can be used to esti-
mate the stability of the superoxide spin adducts. 

 It has been reported that the isotropic ESR hyper-
fi ne splitting constant (hfsc) is proportional to the 
unpaired spin electron density at the nucleus (Fermi 
contact terms) with an equation of  A  N   �  
(8 π /3h) g  N  β  N  g   e   β   e   ρ (0), where  ρ (0)  �  | ψ (0)| 2  [42 – 44]. 
In actuallity, only the s-type orbital has non-zero elec-
tron density at the nucleus; all other-type orbitals 
(p-orbital, d-orbital and so on) have at least one node 
passing through the nucleus (zero density). Consider-
ing that the isotropic hyperfi ne splitting constant is 
proportional to the partial unpaired spin electron 
density (s-orbital), we may reasonably deduce that the 
half-lives ( t  1/2 ) of the spin adducts would be  negatively 
correlated with their hfs constants ( A  N ). This specula-
tion is demonstrated by the plot of experimental  A  N  
with  t  1/2  of the adducts. As shown in Figure 2C,  A  N  
Figure 2. Plots of half-lives (t1/2) of superoxide spin adducts vs spin 
densities on nitroxyl nitrogen (A) or nitroxyl oxygen (B) calculated 
at B3LYP/6-311+G(d,p) level and vs experimental hyperfi ne 
splitting constant of nitroxyl nitrogen (AN) (C).
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exhibit an exponential correlation with  t  1/2  of the spin 
adducts. This non-linearity probably arises from the 
fact that  A  N  is only proportional to the unpaired spin 
electron density of s-orbitals on the nitrogen atom.   

 Decay thermodynamics of superoxide spin adducts 

 Although an exhaustive empirical elucidation has been 
made of the decay mechanisms for cyclic nitrone radical 
adducts, especially superoxide spin adducts [2,45 – 48], 
its theoretical study has not received much attention. 
The interpretation of these decay mechanisms is valu-
able because it can be applied to the future development 
of effi cient spin traps. Until recently only one study 
using DFT theory has shed light on the thermodynam-
ics of decay for DMPO-OOH and DEPMPO-OOH 
[38]. To gain further insight into the effect of 2, 5-sub-
stituents on the stability of cyclic nitrone superoxide 
spin adducts and to design some new nitrones with bet-
ter spin trapping properties, we therefore conducted 
DFT calculations for the possible decay thermodynam-
ics of these fi ve superoxide spin adducts. 

 C – N bond cleavage, as mentioned above, is generally 
involved in the unimolecular decomposition  reaction of 
nitrone superoxide spin adducts [38,39]. Moreover, a 
few reports have revealed that C – H β  bond cleavage also 
occurs, both in the unimolecular decomposition of 
DMPO-OOH [49 – 51] or PBN-OOH [52] and in the 
bimolecular decay route for DEPMPO-OOH [53,54]. 
Meanwhile, the unimolecular reduction of nitroxide to 
the hydroxylamine should be taken into account when 
both an electron and a H �  donor are present in the 
solution [20,34]. This type of reduction is a favourable 
route, especially in biological systems [55,56]. As a 
result, four possible decay routes, including three 
 unimolecular pathways and one bimolecular pathway, 
have been analysed separately, as illustrated in Scheme 
2. The calculated varieties of free energy ( Δ  G ) including 
Table V. Mulliken charge and spin density for nitroxyl nitrogen and oxygen calculated by CPCM-B3LYP method at different basis set 
level.

Milliken Charge 
N (1)

Milliken Chargeon 
O (1’)

Milliken Spin Density on 
N (1)

Milliken Spin Density on 
O (1’)

6-31�G(d,p)
 M3PO-OOH 0.0483 �0.2374 0.5165 0.4434
 DMPO-OOH �0.0681 �0.2383 0.5121 0.4473
 DEPDMPO-OOH �0.2684 �0.0503 0.4903 0.4539
 EMPO-OOH �0.1395-trans

�0.0753-cis
�0.1394-trans
�0.1691-cis

0.4911-trans
0.4818-cis

0.4599-trans
0.4822-cis

 DEPMPO-OOH �0.3204-trans
�0.1626-cis

�0.0540-trans
�0.0911-cis

0.4818-trans
0.4561-cis

0.4623-trans
0.4903-cis

 Linear correlations r � �0.8374 (p � 0.0557)a r � 0.8977 (p � 0.0347)b

6-311��G(d,p)
 M3PO-OOH 0.2741 �0.2022 0.5070 0.4659
 DMPO-OOH 0.1537 �0.2430 0.4946 0.4712
 DEPDMPO-OOH 0.3550 �0.0576 0.4846 0.4747
 EMPO-OOH 0.1284-trans 

0.0575-cis
�0.1784-trans
�0.1303-cis

0.4829-trans
0.4817-cis

0.4798-trans
0.4973-cis

 DEPMPO-OOH 0.2588-trans 
0.0405-cis

�0.1122-trans
�0.0465-cis

0.4623-trans
0.4434-cis

0.4860-trans
0.5132-cis

 Linear correlations r � �0.7973 (p � 0.0700)a r � 0.9890 (p � 0.0037)b

6-311�G(2d,2p)
 M3PO-OOH 0.2533 �0.4224 0.5159 0.4549
 DMPO-OOH 0.1501 �0.4392 0.5114 0.4590
 DEPDMPO-OOH 0.1185 �0.2988 0.5013 0.4605
 EMPO-OOH 0.1123-trans 

0.1816-cis
�0.3766-trans
�0.3736-cis

0.4974-trans
0.4927-cis

0.4688-trans
0.4921-cis

 DEPMPO-OOH 0.0589-trans
�0.0856-cis

�0.3193-trans
�0.3171-cis

0.4893-trans
0.4722-cis

0.4699-trans
0.4978-cis

 Linear correlations r � �0.9347 (p � 0.0220)a r � 0.8603 (p � 0.0477)b

6-311��G(2d,2p)
 M3PO-OOH  0.2853 �0.4023 0.5151 0.4540
 DMPO-OOH  0.1819 �0.4228 0.5084 0.4599
 DEPDMPO-OOH  0.1322 �0.2568 0.5008 0.4613
 EMPO-OOH  0.0998-trans 0.2082-cis �0.3588-trans

�0.3660-cis
0.4972-trans
0.4909-cis

0.4692-trans
0.4924-cis

 DEPMPO-OOH  0.0721-trans-0.1164-cis �0.2899-trans
�0.2992-cis

0.4877-trans
0.4681-cis

0.4714-trans
0.4981-cis

 Linear correlations r � �0.9586 (p � 0.0139)a r � 0.8616 (p � 0.0472)b

ªCorrelation coeffi cient between spin densities on the nitrogen and the half-lives for the superoxide spin adducts; bCorrelation coeffi cient 
between spin densities on the oxygen and the half-lives for the superoxide spin adducts.



758 L.-B. Du et al.

Sche

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

Sa
sk

at
ch

ew
an

 o
n 

12
/0

5/
11

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
the effects of solvation, using the conductor-like polar-
izable continuum model (CPCM) are listed in Table 
VI. The schematic diagram of energy levels for  Δ  G  in 
the rate-limiting steps of these decay routes are shown 
in Figure 3. The  Δ  G  values described in the discussion 
are based on the most stable conformations ( cis -iso-
mers) for all fi ve spin adducts. In addition, the solvent 
contribution to  Δ  G  is listed in Table VII. 

 In the unimolecular decay process involving C – N 
bond cleavage (Mechanism A), superoxide spin 
adducts decompose through two steps [20,38,39]. 
The homolytic cleavage of the hydroperoxyl O – O 
bond (step 1) produces a diradical intermediate 2 (in 
singlet) and a hydroxyl radical and then the diradical 
2 undergoes a C – N bond cleavage to yield a nitroso-
aldehyde 3 (step 2) [38]. As usually observed during 
the decay of some superoxide spin adducts, the HO 

. 
 

generated may then be trapped by the original nitrone 
to form a hydroxyl spin adduct [57,58]. Structural 
analysis of the superoxide spin adducts fi nds that the 
O – O bond lengths for all of the adducts are  ∼  1.45 Å , 
which is similar to the previously calculated values of 
cyclic nitrone superoxide spin adducts [35]. This 
implies that the likelihood of hydroxyl radical produc-
tion from the O – O bond is the same for all of these 
superoxide spin adducts. Comparatively, as discussed 
above, the C(2) – N(1) bond distance varies dramati-
cally and is simultaneously cleaved when the O – O 
bond is ruptured in step 1 on the basis of the struc-
tural diagram for diradical 2 (picture not shown). 
Accordingly, the C (2) – N (1) bond may play a key 
role in mechanism A, consistent with the previous 
proposal [17,38]. This implicitly suggests that step 1 
is a rate-limiting step in mechanism A. This result is 
further strengthened by the fact that the diradical 2 
and the fi nal product, nitrosoaldehyde 3, share the 
same structure except for a difference in conforma-
tion. Thus, mechanism A was modifi ed: the homolytic 
cleavages of the hydroperoxyl O-O bond and C - N 
bond produce a diradical intermediate 2 (in singlet) 
me 2. Various possible decomposition pathways for superoxide spin adducts.
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and a hydroxyl radical (step 1) and then the diradical 
2 undergoes a confi guration adjustment to yield a 
nitrosoaldehyde 3 (step 2). The order of  

.
  G  1  is as 

follows: EMPO-OOH (2.41 kcal/mol)  �  DEPMPO-
OOH (0.85 kcal/mol)  �  DMPO-OOH ( - 2.77 kcal/
mol)  �  �  M 3 PO-OOH ( - 10.31 kcal/mol)  �  DEDP-
MPO-OOH ( - 12.15 kcal/mol). Based on the order 
and the values of  

.
  G  1  (shown in Table VI and Figure 

3), we can roughly speculate that an electron-with-
drawing group at the C-5 position of a cyclic nitrone 
stabilizes its corresponding superoxide spin adduct by 
decreasing the reaction tendency described in mech-
anism A, whereas the methyl group at the C-2 posi-
tion plays an opposite role. 

 The unimolecular decomposition process via the 
C – H β  bond cleavage (mechanism B), possibly induced 
by HO -  or H 2 O, yields a nitroxyl-ketone 4 through the 
elimination of a H 2 O molecule (step 4) [38]. The 
Table VI. Reaction free energies (kcal/mol) of various decomposition pathways for superoxide spin adducts at the CPCM-B3LYP/
6-311�G(d,p)//B3LYP/6-31G(d) level.

Reaction scheme DMPO-OOH M3PO-OOH EMPO-OOH DEPMPO-OOH DEPDMPO-OOH

Mechanism A
 Step 1 �2.77 �10.31 �3.81-trans 

2.41-cis
�3.10-trans 
0.85-cis

�12.15

 Step 2 �1.29 �4.85 �1.97-trans 
�3.30-cis

�1.33-trans 
�3.39-cis

�2.89

 Step 3 �4.05 �15.16 �5.78-trans 
�0.89-cis

�3.88-trans 
�2.54-cis

�15.04

Mechanism B
 Step 4 �86.25 �83.55-trans 

�83.49-cis
�84.65-trans 
�82.76-cis

Mechanism C
 Step 5 11.93 10.08 12.03-trans 

9.45-cis
9.41-trans 

15.72-cis
9.99

 Step 6 �128.37 �125.37 �129.72-trans
�124.33-cis

�127.33-trans
�133.29-cis

�128.31

Mechanism D
 Step 7 �39.12 �9.79-trans 

�9.68-cis
�11.16-trans
 �7.37-cis
Figure 3. Energy level for reaction free energies (kcal/mol) in key steps of possible decomposition pathways (mechanisms A, B, C and D).
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decomposition only occurs for DMPO-OOH, EMPO-
OOH or DEPMPO-OOH, bearing a  β -H at C-2 posi-
tion. All calculated  Δ G 4,S  are less than  - 80.00 kcal/
mol, signifi cantly lower than  Δ   G 1,S  and  Δ G 3,S  in mech-
anism A, which means that mechanism B is thermo-
dynamically more feasible than the decomposition 
process via C - N cleavage. In mechanism B, the  Δ G 4  
is DMPO-OOH  �  EMPO-OOH  �  DEPMPO-OOH, 
which is identical with the observed decomposition 
tendency of the superoxide spin adducts. In other 
words, an electron-withdrawing group at the C-5 posi-
tion can lessen the tendency to decay via C - H β  cleav-
age and therefore stabilize the superoxide spin adducts. 
It is shown that ease of the C - H β  bond cleavage for 
the HO  .   adduct was dependent on the conformation 
of the  β -H relative to the singly occupied orbital on 
the nitroxyl nitrogen. [17]  Only a low level of activation 
energy for the C - H β  cleavage is required when the 
singly occupied orbital on the nitroxyl nitrogen is in 
the same plane as the H β  atom to be abstracted. That 
is, the dihedral angle of � O(1 ’ )-N(1)-C(2)-H is close 
to 90 ° . Structural analysis shows that the more stable 
EMPO-OOH and DEPMPO-OOH have a smaller 
dihedral   � O(1 ’ )-N(1)-C(2)-H (62.1 °  for  cis -EMPO-
OOH; 43.6 °  for  cis -DEPMPO-OOH) than that of 
DMPO (73.6 ° ). Correspondingly, an electron-with-
drawing group at C-5 position decreases the likeli-
hood of the decay via C - H β  bond cleavage. 

 In the unimolelcular reduction process (mechanism 
C), formation of a H-bond between an O atom from 
the nitroxyl group and a H �  from H 3 O �  (step 5) is a 
pre-requisite and then the produced intermediate 5 
accepts one electron and gives rise to hydroxylamine 
6 (step 6). Although step 5 is endoergic (9.45  ∼  15.72 
kcal/mol), the subsequent step 6 has a high exother-
micity with  Δ  G  6  values of  - 124.33 ∼  - 133.29 kcal/mol. 
A similar reduction mechanism has been proposed to 
possibly occur in the decay of the linear nitrone super-
oxide spin adducts and the protonation process is a 
rate-limiting step [20]. In step 5 (a protonation pro-
cess), however, the order of  Δ  G  5  is EMPO-OOH  �  
DEPDMPO-OOH ∼ M 3 PO-OOH  �  DMPO-OOH  �  
DEPMPO-OOH (as shown in Table VI and Figure 3), 
largely inconsistent with their stability sequence. This 
result indicates that mechanism C probably is not the 
proper decay pathway that is responsible for elucidat-
ing the 2, 5-substituents ’  effect on the stability of 
cyclic nitrone superoxide spin adducts. 

 In the bimolecular decay pathway (mechanism D), 
the products were diamagnetic hydroxylamine 6 and 
compound 7. This is similar to the step 4 reaction in 
mechanism B, where the  β -H abstraction reaction (step 
7) takes place only in the decomposition processes of 
DMPO-OOH, EMPO-OOH and DEPMPO-OOH 
and, more interestingly, the ease of the  β -H abstraction 
by another superoxide spin adduct molecule was pos-
tulated to be similarly dependent on the dihedral   � O 
(1 ’ )-N (1)-C (2)-H [17]. Therefore, we can reasonably 
estimate the bimolecular decay tendency according to 
the dihedral angle (DMPO-OOH  �  EMPO-OOH  �  
DEPMPO-OOH, see discussion for mechanism B). A 
comparison of  Δ  G  7  values calculated for mechanism D 
shows that the order of  Δ  G  7  is as follows: DEPMPO-
OOH ( - 7.37 kcal/mol)  �  EMPO-OOH ( - 9.68 kcal/
mol)  �  DMPO-OOH ( - 39.12 kcal/mol), which indi-
cates that, in the bimolecular decomposition process, 
the introduction of a strong electron-withdrawing 
group at the C-5 position thermodynamically stabilizes 
the superoxide spin adduct.    

 Conclusions 

 Five cyclic nitrone superoxide spin adducts were 
utilized to investigate the effects of 2, 5-subsitituents 
on the stability of the superoxide spin adducts by 
employing DFT calculations. Analysis of their 
Table VII. Solvation contributions to reaction free energies (kcal/mol) of various decomposition pathways for superoxide spin adducts at 
the CPCM-B3LYP/6-311�G(d,p)//B3LYP/6-31G(d) level.

Reaction scheme DMPO-OOH M3PO-OOH EMPO-OOH DEPMPO-OOH DEPDMPO-OOH

Mechanism A
 Step 1 �1.38 �4.77 �0.65-trans

�0.24-cis
�2.08-trans 
�1.56-cis

�7.19

 Step 2 �0.86 0.16 �0.29-trans 
0.45-cis

�1.15-trans 
�0.62-cis

�0.33

 Step 3 �5.63 �1.22 �0.94-trans 
0.21-cis

�3.23-trans 
�2.18-cis

�7.52

Mechanism B
 Step 4 �5.47 �5.31-trans

�4.16-cis
�6.07-trans 
�5.02-cis

Mechanism C
 Step 5 49.45 54.19 55.13-trans

59.14-cis
58.40-trans 
61.27-cis

61.13

 Step 6 49.42 43.84 43.81-trans
44.19-cis

39.76-trans 
37.34-cis

35.63

Mechanism D
 Step 7 �39.12 �9.79 �11.16
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geometric structures indicates that the previously 
suggested three factors, including intra-molecular 
H-bonds, intra-molecular non-bonding interactions 
and steric protection, may be important stabilizing 
factors for the superoxide spin adducts, but they are 
not available for fully predicting the effect of 2, 
5-substituents on the stability. Further investigations 
on the stabilizing factors for the superoxide spin 
adducts indicate that neither the C(2)-N(1) bond 
distance nor the charges on the nitroxyl nitrogen and 
the nitroxyl oxygen are key parameters that can be 
used to explain the effects of 2,5-substituents. 

 Nevertheless, an inspection of the spin densities on 
nitroxyl nitrogen and nitroxyl oxygen reveals that both 
of their spin densities are linearly correlated with the 
stability of the superoxide spin adducts and thus prob-
ably used as proper parameters to interpret and predict 
the effects of 2, 5-substituents. Additional experimental 
analysis on the correlation between the hyperfi ne split-
ting constant of nitroxyl nitrogen ( A  N ) and the half-
lives ( t  1/2 ) of the spin adduct strongly support the 
hypothesis regarding the spin densities. On the other 
hand, thermodynamic calculations of the decay path-
ways, including three possible unimolecular decom-
position processes and one possible bimolecular 
decomposition process, demonstrate that all the decay 
pathways, except for the unimolecular reduction of 
nitroxide to hydroxylamine, may be used in explaining 
the effects of 2,5-substituents on spin adduct stability.  
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